
JOURNAL OF COMPUTATIONAL PHYSICS 7.5, 138-150 (1988)

The Implementation of Fluid Phase
Monte Carlo on the DAP

D. J. ADAMS

Department qf Chenlistr!, The lrnic’ersiiy,
Sourhamprorv SO9 jNH, tinited Kingdom

Rrceived .4ugust 12, 1986; rev&d March 13. 1987

A schsmc by which a distributed array processor (DAP) may be used efliciently for the
Monte Carlo simulation of condensed matter is described. The approach gives a certain
flexibility to the size of system simulated. For a 64 x 64 DAP one simulates systems each of
2” x 63 particles or molecules simultaneously, where n is an integer in the range 0 to 6. The
method of coping which systems with a hardsphere potential using either constant volume or
constant pressure ensembles is described. 1‘8 1988 ;\cadcmic Press, Inc.

1. INTRODUCTION

The ICL distributed array processor (DAP) is a working example of a single-
instruction-multiple-data computer [11. It is arranged as a square lattice of single-
bit processing elements (PEs), each able to access its own data area and the data of
its four nearest neighbours. It can be programmed with its own high-level language,
DAP FORTRAN, which has the necessary extensions to exploit the highly parallel
architecture of the machine, together with a library of functions and sub-
routines [3]. The presently available machine has 64 x 64 PEs, and this is the size
that will generally be referred to in this paper, though a 32 x 32 LSI DAP is
undergoing user trials and a 128-128 VLSI machine is being developed, sponsored
by the U.K. Ministry of Defence. The attraction of the DAP is its speed and high
cost eficiency for many large-scale computations. The present 64 x 64 machine can
maintain 15 million floating point operations per second [11.

The methods of Monte Carlo and molecular dynamics for the simulation of con-
densed matter at the molecular level are large-scale problems that consume very
large amounts of computer time and are ready candidates for parallel processing.
When the system to be simulated has a lattice structure with only near-neighbour
interactions, which occurs in a wide variety of problems from the Ising lattice to the
plastic phase of SF,, for example, then the DAP can be used with high efficiency.
This is done by devoting each PE to a lattice site and using the DAP in matrix
mode. In molecular dynamics the force on each particle can be computed
simultaneously. In Monte Carlo many lattice sites can be updated independently

138
0021-9991/G $3.00
Copgnghl ‘i 1988 by Acadcmx Press. Inc.
.AII rights of reproduction in any form rexwed.

MONTE C4RLO ON THE DtaP 1 39

(because only near-neighbours interact) and therefore simultaneously. With suf-
ficient ingenuity it is often possible to achieve 100 4’; use of the PEs. Pawley and
Thomas have shown how a variety of 2, 3. and 4-dimensional lattices can be map-
ped onto the square lattice of the DAP [3].

When a fluid system, or indeed a solid with long-range forces, is simulated by
molecular dynamics then the DAP is used in a slightly different way. Each PE is
used to compute the forces between a pair of particles, again using matrix mode. In
the simplest case there would be 64 particles and the DAP computes all 64 x 64 pair
interactions simultaneously. The supplied function SUMC is used to find the net
force on each particle. SUMC takes a 64 x 64 matrix as argument and returns a
vector value, each component of which is the sum of all the components in the row
of the matrix argument [2]. Larger systems are readily accommodated by workmg
with multiples of 64 particles; the forces are calculated by simultaneously com-
puting the interactions of all the particles on one block of 64 with all the particles in
a second block. This is the method used by Fincham et al. [4] in the simulation oi
CQ,!C,H, mixtures on the DAP.

In molecular dynamics every particle is moved at each step and the force on
every particle has to be known at each step. However, in Metropolis Monte Carlo
oniy one particle is moved at each step and only the energy of that one particle
needs to be computed. When the particle interacts with many others, or the system
is a fluid and near neighbours are not trivial to locate. only one Monte Carlo step
can be made at a time. The only immediately obvious way of achieving high
“efficiency” is then to have a system of 64’=4096 particles and calculate the
interaction of the one moved particle with all others. While this is feasible, there are
few cases where one would choose to do such a thing using a conventional scalar
processor, and the apparent highly efficient use of the DAP would be illusory for
most systems.

It is the purpose of this paper to demonstrate how a greater flexibility for the
system size may be achieved in Monte Carlo while maintaining a highly efficient use
of the DAP. Section 2 describes the basic scheme: the DAP is used to simulate 64
independent systems, each of 64 particles, simultaneously. Section 3 describes an
extension to this scheme so that systems of size 2” x 64 particles may be efficiently
simulated. The fourth section deals with the special case, frequently encountered in
Moi;te Carlo. where there is a hard (i.e., infinite) term in the pair potential.

For example. with the scheme described in this paper the author is able to per-
form Monte Carlo calculations for the dipolar hard-sphere fluid, including the
calculation of several distribution functions, at a rate of - 50 thousand steps per
hour for each of eight systems of 512 dipoles. For a less complicated potential with
a hard-sphere term, the restricted primitive model of electrolyte solutions using a
simple isotropic approximation to the Ewald sum [S], a rate of -200 thousand
steps per system per hour is achieved.

Chapman and Quirke [6] have considered an alternative approach to Monte
Carlo on a parallel processor in which all, or a large fraction, of particles are moved
at each step. This interesting suggestion does seem practical for small systems.

140 D. .I. ADAMS

However, it is most unlikely to compete with the present scheme for systems larger
than 64 particles at most. Only in its most favourable case, a system of 32 particles
on a 32 x 32 DAP is it a serious contender to the scheme described here.

2. THE BASK SCHEME

The DAP can be thought of as a square matrix. In the basic scheme each row of
the matrix stores and processes a system of particles completely independently of
those in other rows. With a 64 x 64 DAP there will therefore be 64 systems of 64
particles which will be simulated simultaneously. The user has complete freedom to
set the density and temperature (or pressure and temperature with the NpT ensem-
ble) of each individual system. It is even possible to vary the parameters of the
potential between systems, though the form of the potential must be the same
throughout. When 64 different state points are not required it is possible to set two
or more systems to the same state point. This has the advantage that simple error
estimates can be obtained because the results from different systems are truly
independent, once properly equilibrated.

The DAP Support Unit (at Queen Mary College, London) provides random
number generators for the DAP which produce at each call a 64’ matrix of random
numbers, evenly distributed between 0 and 1 and independent both of each other
and previous random numbers in the sequence [7]. A call to one one of these
would look like

RAND(,) = GO 5-NAG-REAL.4(0.0) (1)

where RAND is a real matrix variable and GOS-NAG-REAL4 is a real matrix
function with a dummy scalar argument. One call provides more than sufficient
numbers for the entire Monte Carlo step. The construction RAND(,) refers to the
entire range of the matrix RAND.

The first stage in a Monte Carlo step is to choose al random the particle to be

L LHERE

a bad
e@)g h

(?jj kl

mn@p
X

-+C

-sf

1

-z-i

+0
XL

FIGURE 1

MONTE CARLO ON THE D.@ 141

given a trial displacement. The first column of RAND can be used to choose a
particle for each system:

L()=FIX(l.+RAND(, 1)*64.) (2)

where L is an integer vector variable and FIX is a supplied function. The construc-
tion L() refers to the entire range of the vector L.

It is necessary to set up a logical mask to identify which particle on each row has
been chosen: this is the logical matrix LHERE. Vectors of the chosen particle cooc-
dinates are then extracted from the matrices of all particle coordinates:

LHERE(,) = COLiL)

XL() = X(, LHERE)

YL() = Y(. LHERE)

ZL() = Z(, LHERE)

COL is a supplied function [I]. Figure (1) illustrates how (3) operates.
The trial displacement of the chosen particles and the correction for the periodic

boundary conditions is done by using the DAP in vector mode. This is -4 times as
fast as matrix mode [I 1], but only 64 calculations are made simuitaneously instead
of 64’. A vector of trial positions is produced by

T-xL() = J’L + DMAX * (RAND(. 2) - 0.5) (4‘ 1

Note that new the second column of RAND is used, the third and fourth will be
used for the Y- and Z-coordinates. DMAX is a real vector variable. each eiemcnl
corresponding to the maximum allowed displacement for that system. As 64 vaiiaes
in DMAX have to be set. it is advisable to do this by automatic adjustment during
the equilibration part of the calculation to give the usual -- 50% acceptance rate for
each system. For simple cubic periodic boundary conditions (PBC) with a unit ceil
length over the range -0.5 to +OS the correction for the PBC takes two lines for
each dimension:

TXL(TXL.LT.-O.j)=TXL+ 1.0
(5)

TXL(TXL .GT. 0.5) = TXL - 1.0.

Additional code is required if truncated octahedral PBC [S] are used, with two
additional logical vector variables POS and CORNER:

CORNER() = ABS(I%!,) + ABS(TYL) + ..ISS(TZL) GT. 0.75

POS() = TXL.GT.O.O

7%.L(CORNER .AND. POS) = TzyL - 0.5

I-&?L(CORNER AND. . NOT. POS) = I-XL + 0.5

(6)

142 D. J. ADAMS

and similarly for TYL and TZL. The assignments in (5) and (6) are only made for
those elements whose corresponding element in the left-hand-side argument of TXL
is true [a]. If the ceil coordinates go from - 1 to + 1 then the correction for PBC
can be speeded up by using short-length integer arithmetic [9]. Rhombic
dodecahedral PBC would be similarly programmed.

The matrix of s-distances between the trial particles and all the others is
constructed so

DX(,)=X-MATC(TXL) (7)

and similarly for the real matrix variables DY and DZ. The supplied function
MATC returns a matrix in which every element in is ith row is equal to the ith
component of the function’s vector argument [2]. The matrices of pair separations
can be corrected for the nearest image distance in the manner of (5) and (6).

However, Fincham [9] has described a superior method relying on a feaure of
the ICL DAP that when a single-bit logical matrix is declared EQUIVALENT to a
real matrix variable then each element in the logical matrix is mapped onto the sign
bit of the corresponding real element, with true for positive and false for negative.

Having constructed the matrices of all modified interparticle distances, the poten-
tial energy between every pair of particles can then be calculated simultaneously
using matrix mode. The result is a matrix of energy terms. For the Lennard-Jones
potential the code would look something like

W, 1 =DX**2+DY**2+DZ**2

R2(LHERE) = 1.0
TERMI,) = (MATC(SIGMA)**2/R2)**3 (8)

u 1) = 4.0 * MATC(EPSILON) * TERM * (TERM - 1.0)

U(LHERE) = 0.0

where TERM is a real matrix variable and EPSILON and SIGMA are real vector
variables, each component corresponding to one of the 64 systems. The line

R2(LHERE) = 1.0 (9)

prevents division by zero on the following line and

U(LHERE) = 0.0 (10)

removes the resulting terms for the interaction of each trial particle with itself. The
above code (8) is illustrative only and would be optimised in practice. The impor-
tant point is that ail but 64 of the 64’ PEs are doing useful calculations. Having, in
the usual way, computed the energy of the chosen particles in both their old and
trial positions the net changes in energy can then be calculated using the SUMC
function already described:

DU() = SUMC(D’_TRIAL-POSITION - KOLD-POSITION j (11)

MONTECARLOONTHE DAP 133

A logical vector variable ACCEPT is given by

ACCEPT() = EXP(- DU/KT) .GT. RAND(. 5) (Ej

where the real vector variable KT contains the Boltzmann’s constant times tem-
perature for each system. ACCEPT is used as a mask to update only those systems
which pass the Boltzmann weighting test, modifying the coordinates

Y(LHERE .AND. ACCEPT) = MATC(TXL) {I?\

etc., and updating the total energy

UTOTAL(.ACCEPT) = UTOTAL + DC’, (14)

for example. The various additions are made to the (vector) running sums and
Monte Carlo step is complete.

3. A MORE FLEXIBLE SCHEME

Sixty-four particles is just acceptable as sufficient for serious work, and the use of
truncated octahedral PBC makes low numbers of particles more acceptable [4.9].
However, calculations with 64 systems of only 64 particles are really suitable only
for preliminary work and larger systems are always desirable and often necessary. A
simple way of getting this is to increase the total number of particles so that each
PE is used for two or more particles. This is the natural approach for molecular
fluids: each PE is used for one molecule of (perhaps) several particles. However, 64
independent systems, each of (say) 512 particles, is a formidably large undertaki.ng,
particularly if one does not irant 64 independent systems. A better scheme is to keep
the total number of particles (or molecules) at 64’ and have, for example, only 8
systems of 512 particles. This approach is described in this section. The cm2
overheads incurred are not time consuming and the simulation of 8 systems of 5 I2
particles is only marginally slower than 64 systems of 64 particles.

The basic idea is very simple. Instead of one row of the matrix per system. each
system occupies two or more sequential rows, all systems being the same size. If all
rows of PEs are to be used this restricts us to 64/2” systems of 2” x 64 particles,
0 <rr ~6. The matrix-mode calculation of the interaction energies between the
chosen particles and the others is unchanged. However, the setting up of the chosen
particles and the summing up of the pair energies and, indeed, all the vector-mode
parts become more involved.

At the start of each step choosing particles and making trial displacements is
carried out exactly as for 64 systems. This means that one particle per row has been
selected and moved and only one particle per system is required. A single number is

%!:75’!.10

144 D. J. ADAMS

chosen at random and is used to pick out the single trial particle to be used in each
system by identifying the row it occupies:

NS= FIX(Rand(1,6) * FLOAT(NSIZE)) il5)

where NSIZE is the number of rows in each system. Think of the DAP matrix split
into horizontal bands each of NSIZE rows. The rows of each system are numbered
from the bottom up, with the bottom row or base 1’01~ numbered zero. A preset
logical vector, BASE, and a preset logical matrix, BASE--ROW, point to the base
rows; that is, they take the value TRUE only on base rows. The logical matrix
LINE is set TRUE for the PEs of the chosen row of each system by

LINE(,) = SHNP(BASE-ROW, NS) (16)

where SHNP is a supplied function, the name being an anacronym for shft north
plmar [2, 31. The logical matrix LHERE is revised so as to mask only one chosen
particle per system by

LHERE(,) = LHERE .AND. LINE (17)

The vectors XL, TXL, etc., contain the coordinates of a different particle in each
row, but now have to contain the coordinates of the one chosen particle in each
row of a system. This is set up for all the systems simultaneously. First, the coor-
dinates of the chosen rows are shifted down to the base rows, for example,

XL() = SHRP(/YL, NS) (18)

where the supplied function SHRP (shif right planar) moves every element in
vector XL down by NS places, with zeros inserted at the top. Second, the values in
the base positions are copied into the rows above. Logical vector variable B and
real vector variable -4 are used as intermediaries:

NBB = NSIZE - 1

A()=XL

B(-) = BASE

DO 100 I= I, NBB

B()=B(+ 1

A()=A(+)

100 XL(B) = A

(19)

The line

B()=B(+) G-3))

SUM() = DL!

DO 100 I= 1, IVBB

DU()=DU(-)
(2.1)

100 SUM() = SUM + DU

DU()=O.O

MONTE CARL.0 ON THE DAP 145

in (19) shifts the contents of all the elements in B up the vector by one, and is
equivalent to, but faster than, using SHLP [a, 11. Figure (2) is an attempt ro
illustrate the operation of (19); in practice one would not use NSIZE = 3.

Similar code is used to find the change in energy of each system. After the cali of
SUMC the subtotals of each row are summed into the base position of each system:

DV(BASE) = SUM

Only base positions are used to store the total energy, etc. of each system. Code
similar to (19) and (21) is used to update the coordinates in systems where the trial
move is accepted and generally to compute and to update the properties of each
system.

NSIZE= 3

1

2
T 3

Ells

4

5
T 6

B=BASE A:XL

B=B(+) A-A(*) XL(E)=A

B=B(+) A:A(+) XL(E$=A

FIGLXE 3

146 D. J. ADAMS

The whole scheme seems elaborate and time consuming. In practice this is not so.
A few subroutines contain all the variations on (19 j and (21) required and, because
this sort of data manipulation on the DAP is very much quicker than numerical
calculation, the time overheads are small. Note that the code for calculating the
pair potential terms in matrix mode is unaltered from that in the basic scheme of
one system per row.

4. HARD-SPHERE POTENTIAL

The combination of a continuous potential with a discontinuity, such as the
hard-sphere potential,

qJHs(Y)= 0”’
L

I’<0
Y > 0, (22)

presents a particular difficulty for molecular dynamics simulation, and such poten-
tials are very likely to be tackled by Monte Carlo. Using the canonical ensemble.
for which the system volume remains constant, the presence of a hard-sphere term
requires only a minor addition to a DAP Monte Carlo program. A logical matrix
variable OVERLAP is introduced,

OVERLAP(, j = R . LT. MATC(SIGMAj .AND. .NOT. LHERE (23)

where real matrix variable R contains all pair separations. The logical equivalent of
SUMC in this context is the supplied function ORCOLS, and the logical vector
OVER is set TRUE for any row with an overlap by

OVER. = ORCOLS(OVERLAP). (24)

A logical-OR into the base positions is made by code similar to (19) and then (12)
becomes

ACCEPT() = BASE . AND. EXP(- DU,‘K7’). GT. RAND(, 5)

.AND. .NOT. OVER (25)

The constant NpT ensemble, introduced into Monte Carlo by Wood [lo], is a
valuable technique as it avoids the necessity of extrapolating the radial distribution
function, g(r), to contact in order to find the pressure. Radial distribution functions
can be found efficiently on the DAP [1 l] but the extrapolation to contact
inevitably limits the precision, particularly at high pressure when g(r) is a steeply
varying function. In fact the NpT ensemble has seen very little use for this purpose,
possibly due to the more involved programming required. The method for a
normal, serial processor is therefore outlined first and then the implementation on
the DAP is described.

MONTE CARLO ON THE DAP id-7

In addition to choosing a particle and moving it by a small random shift, a small
random change is made to the linear dimensions of the periodic cell. It is necessary
to test whether, as a result of this change in cell size, two or more particles overlap.
To do this efficiently the program keeps a record of the two particles closest
together, i and j, and their separation I’,,~,,.

At each step, in addition to checking for overlap of the trial particle with the
others, some extra checks may be necessary. If the trial partic!e is not i-orj then the
trial move is rejected if the volume has been reduced so that r,,;, is now too smali.
If the trial particle is i or j and the volume has been reduced sufficiently that I’,,,,,
would have been too small it is necessary to check all pair separations in case there
is another pair of particles too close together. If the trial move is accepted and the
trial particle was i or j it is necessary to go through all pairs of particles anyway to
find the new i, j, and rmln. Otherwise it is only necessary to consider the revisicn of
i. j, and rmln on the basis of the new distances between the trial particle and the
others. The time required for the search over all pairs mcreases as N’. However, the
probability that the trial particle is i or j goes as N-r and therefore the extra time
required for these checks increases only linearly with the number of particles. X.
There is an optimum order for the various stages in the Monte Carlo step. For
example, the trial particle and trial volume change are chosen first and the old
configuration is retained, skipping over the rest of the checks and changes, if

I’ll% is now too small and the trial particle is not i or .j.
‘A major programming difference with the DAP is that as several systems are

being simulated simultaneously it is not possible to take short cuts: every stage of
the checking procedure has to be gone through regardless of whether overlap has
already been found. However, the search over all pairs in a system is only perfor-
med as necessary. The search over all pairs is done one system at a time. The rows
of a system are taken in pairs, including the “pair” of a row with itself, and 64-’
pairs of particle separations computed at a time. A supplied function, MINP, finds
the position of the smallest element in its matrix argument.

A logical matrix variable, MINHERE, is constructed in which elemenrs are
TRUE at the locations of the i and j of each system, and a real Vector variable
holds the rmln.

When there is just one row per system it is easy to pick out the minimum disran-
ces between the trial positions of the chosen particles and the others for every
system simultaneously. The logical matrix variable MINLOC is set to TRUE for
the position of the minimum in each row by

MINLOC(.) = COL(COLN(XC?-EMINPC(R))) I- ‘6)

where X05-EMINPC is a logical matrix function is the DAPSU library [it]. It
returns the location of the minimum on each row. The inelegant construction with
COL and COLN [13] is required to pick out the first location when
X05-EMINPC finds the same minimum value in two or more components on a
row. (When MINP is used to find the minimum of th e entire matrix then the sup-

148 D. J. ADAMS

plied function FRST can be used for the same purppose). The values of the minima
are put into a vector variable by

RMIN-OF-L() = R(, MINLOC) (27)

The information on the minimum separations in the trial configurations is set up by

I-ORJ() = ORCOLS(LHERE ,AND. MIN-HERE)

UPDATE() = RMIN-OF-L .LT. RMIN .AND. .NOT. (OVER .OR. Z-OR-J)

TRIAL-MIN-HERE(,) = MIN-HERE

TRIAL-MIN-HERE(MATC(UPDATE)) = LHERE . OR. MINLOC

TRIAL-RMIN() = RMIN

TRIAL-RMIN(UPDATE) = RMINmmOF-L (28)

A search over all pairs in a system is made for those systems for which
(Z-OR-J .AND. .NOT. OVER) is TRUE.

When there are two rows per system a few extra lines are necessary to find which
row has the lower minima:

I-OR-J() = ORCOLS(LHERE .AND. MIN-HERE)

I-OR-J(BASE) = I-OR-/.OR. I-OR-J(-)

BB(BASE) = RMIN-OF-L. LT. RMIN-OF-L(-)

BB(. NOT. BASE) = NOT. BB(+)

RMIN-OF-L(BASE) = MERGE(RMIN-OF-L, RMIN-OF-L(-), BB)

MINLOC(,) = MINLOC . AND. MATC(BB)

UPDATE(BASE) = RMIN-OF-L .LT. RMIN

.AND. .NOT. (OVER .OR. Z-OR-J)

UPDATE(.NOT. BASE) = UPDATE(+)

TRIAL-MIN-HERE(,) = MIN-HERE

TRIAL-MIN-HERE(MATC(UPDATE)) = LHERE .OR. MINLOC

TRIAL-RMIN() = RMIN

TRIAGRMIN(UPDATE) = RMIN-OF-L (29)

The supplied function MERGE returns in each component the corresponding
component of the first or second argument according to whether the corresponding
component of the logical vector variable BB is TRUE of FALSE.

MONTECARLOONTHE DAP 149

When there are four or more rows per system, and therefore fewer systems, it is
probably simplest to locate the minimum distance between each trial particle and
the others, one system at a time, using the function MINP on matrix R with all but
the rows of that system masked out [13].

5. CONCLUSION

Provided it can be used efficiently, which means keeping most of its PEs in useI’r1
employment, the DAP is an extremely cost-effective computer. This paper has
shown how this may be achieved for the Monte Carlo study of condensed matter.
Much use is made of the ability of the ICL DAP to function with moderate
efficiency in vector-mode arithmetic where several PEs (32 with REAL”4 variables)
handle each variable element. The calculation of the pair potential, the time CDT;-

suming part with a serial machine, is done in matrix mode with all but 64 of the
PEs active. The method is particularly attractive when the pair potential is
relatively complicated, such as the Ewald potential expanded in Kubic ar-
monies [S]. A DAP is not appropriate when the pair potential is a tabulated
function, but as such functions as SQRT, LOG, EXP, and CQS are all performed
at about the same speed as a single multiplication Cl], it is often possible to com-
pute a pair potential in a way not acceptable on a serial machine.

The flexibility of the present scheme, allowing systems of size yiz x 2” on an i?r x ~1
DAP, can be further increased very easily at the expense of a few rows of per-
manently idle PEs. Thus on a 64 x 64 DAP one could have 21 systems of 192
molecules with only one row idle.

The present scheme should be of use with all sizes of DAP from 32 x 32 upwards.
While 32’= 1024 particles is not a large system by current standards, a system of
1024 molecules would be, and the alternative of say four systems each of 256
molecules is attractive. However, the larger the DAP the more important a
flexibility in the system size becomes, and the prospective I28 x 128 DAP will need
such a scheme if it is to be used for Monte Carlo of tluids.

ACKNOWLEDGMENTS

The author in a SERC Advanced Fellow. The assistance of the staff of the DAP Support Ur,it 2.1
Queen Mary Col!ege is gratefully acknowledged.

REFERENCES

1. R. W. HCKKNEY AND C. R. JESSHOPE. Parallel Compurers (Adam Hilger, Bristol. 1981)
2. ICL Technical Publication No.‘6755, 1978 (unpublished).
3. G. S. PAWLEY AND G. W. THOMAS. .I. Compur. Ph,rs. 47, 165 (1982).
4. D. FINCHAM, N. QUIRKE, AND D. J. TILDESLEY. J. C’lwx Ph~x 84. 4535 (1986 1.

150 D. J. ADAMS

5. D. J. ADAPTS AND G. S. DUBEY, J. Comput. Plzys., 72, 153-173 (1987).
6. W. CHAPMAN AND N. QUIRKE, P~zv.~ica B 131, 34 (1985).
7. K. A. SMITH. S. F. REDDAWAY, .4~13 D. M. SCOTT, Comput. Pllys. Commun. 37, 239 (1985).
8. D. J. ADAMS. in Proceedings NRCC No. 9, p. 13; Report LBL-10634, Lawrence Berkeley Laboratory,

University of California, 1980 (unpublished).
9. D. FINCHALI. CCPS Newslerter 12, 43 (1984) (an informal publication available from the SERC

Daresbury Laboratory, Warrington WA4 4AD, U. K.)
10. W. W. WOOD, “Monte Carlo Studies of Simple Liquid Models,” in Physics of Simple Liquids, edited

by H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke (North-Holland, Amsterdam, 1968).
ch. 5.

11. D. FINCHAM, CCPS Newsletter 8. 45 (1983).
12. H. M. LIDDELL AND G. S. J. BOWGEN, Compur. Phys. Commun. 26, 311 (1982).
13. ICL Technical Publication No. 6918, 1979 (unpublished).

